- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cleary, Jessica L. (2)
-
Sanchez, Laura M. (2)
-
Dutton, Rachel J. (1)
-
Kolachina, Shilpa (1)
-
Luu, Gordon T. (1)
-
Pierce, Emily C. (1)
-
Tullman-Ercek, Danielle (1)
-
Wolfe, Benjamin E. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multispecies microbiome systems are known to be closely linked to human, animal, and plant life processes. The growing field of metabolomics presents the opportunity to detect changes in overall metabolomic profiles of microbial species interactions. These metabolomic changes provide insight into function of metabolites as they correlate to different species presence and the observed phenotypic changes, but detection of subtle changes is often difficult in samples with complex backgrounds. Natural environments such as soil and food contain many molecules that convolute mass spectrometry-based analyses, and identification of microbial metabolites amongst environmental metabolites is an informatics problem we begin to address here. Our microbes are grown on solid or liquid cheese curd media. This medium, which is necessary for microbial growth, contains high amounts of salts, lipids, and casein breakdown products which make statistical analyses using LC-MS/MS data difficult due to the high background from the media. We have developed a simple algorithm to carry out background subtraction from microbes grown on solid or liquid cheese curd media to aid in our ability to conduct statistical analyses so that we may prioritize metabolites for further structure elucidation.more » « less
-
Cleary, Jessica L.; Kolachina, Shilpa; Wolfe, Benjamin E.; Sanchez, Laura M.; Tullman-Ercek, Danielle (, mSystems)ABSTRACT Microbial communities of fermented food microbiomes typically exhibit predictable patterns of microbial succession. However, the biochemical mechanisms that control the diversity and dynamics of these communities are not well described. Interactions between bacteria and fungi may be one mechanism controlling the development of cheese rind microbiomes. This study characterizes a specific bacterium-fungus interaction previously discovered on cheese rinds between the bacterium Glutamicibacter arilaitensis (formerly Arthrobacter arilaitensis ) and fungi of the genus Penicillium and identifies the specialized metabolites produced during cocultures. G. arilaitensis was previously shown to produce an unknown pink pigment in response to the presence of Penicillium . Using a combination of mass spectrometry, nuclear magnetic resonance (NMR), and transcriptome sequencing (RNA-seq), we determined that this pigment production is associated with production of coproporphyrin III. The discovery that coproporphyrin III preferentially bound zinc over other trace metals found in cheese curds highlights the value of using analytical chemistry to confirm identity of predicted chemical species. IMPORTANCE Bacterium-fungus interactions play key roles in the assembly of cheese rind microbial communities, but the molecular mechanisms underlying these interactions are poorly characterized. Moreover, millions of people around the world enjoy eating cheeses and cheese rinds, but our understanding of the diversity of microbial metabolites ingested during cheese consumption is limited. The discovery of zinc coproporphyrin III as the cause of pink pigment production by Glutamicibacter arilaitensis suggests that secretion of this molecule is important for microbial acquisition of trace metals.more » « less
An official website of the United States government
